Surface tension model for surfactant solutions at the critical micelle concentration.

نویسندگان

  • Sergei F Burlatsky
  • Vadim V Atrazhev
  • Dmitry V Dmitriev
  • Vadim I Sultanov
  • Elena N Timokhina
  • Elena A Ugolkova
  • Sonia Tulyani
  • Antonio Vincitore
چکیده

A model for the limiting surface tension of surfactant solutions (surface tension at and above the critical micelle concentration, cmc) was developed. This model takes advantage of the equilibrium between the surfactant molecules on the liquid/vacuum surface and in micelles in the bulk at the cmc. An approximate analytical equation for the surface tension at the cmc was obtained. The derived equation contains two parameters, which characterize the intermolecular interactions in the micelles, and the third parameter, which is the surface area per surfactant molecule at the interface. These parameters were calculated using a new atomistic modeling approach. The performed calculations of the limiting surface tension for four simple surfactants show good agreement with experimental data (~30% accuracy). The developed model provides the guidance for design of surfactants with low surface tension values.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Salinity Effect on the Surfactant Critical Micelle Concentration through Surface Tension Measurement

One of the tertiary methods for enhanced oil recovery (EOR) is the injection of chemicals into oil reservoirs, and surface active agents (surfactants) are among the most used chemicals. Surfactants lead to increased oil production by decreasing interfacial tension (IFT) between oil and the injected water and to the wettability alteration of the oil reservoir rock. Since surfactants are predomin...

متن کامل

Experimental Study of Salinity and Ionic Strength Effects on Critical Micelle Concentration of a Cationic Surfactant (HTAB)

The interfacial tension of surfactant solutions is decreased with increasing surfactant concentration to obtain the critical micelle concentration (CMC). After that, the CMC values does not alter much. So this concentration is a critical point during surfactant flooding that is one of the chemical EOR techniques. The reduction of the CMC value is taken into consideration, since the surfactant f...

متن کامل

Experimental Study of Surface and Solution Properties of Gemini -conventional Surfactant Mixtures on Solubilization of Polycyclic Aromatic Hydrocarbon

Experimental data are presented on the enhanced solubilities of fluorene (FLR) resulting from solubilization in aqueous solutions of two conventional surfactants: cationic cetyltrimethylammonium bromide (CTAB) , anionic sodium dodecyl sulfate (SDS), nonioinic polyethylene glycol dodecyl ether (Brij35) and a cationic gemini bis (hexadecyldimethylammonium) pentane dibromide (G5). The critical mic...

متن کامل

Dynamic interface tension of a smectic liquid crystal in anionic surfactant solutions.

The interface tension of a smectic liquid crystal with respect to a surrounding ionic surfactant solution is investigated at concentrations above and below the critical micelle concentration (cmc). A simple measurement technique has been developed recently [Phys. Chem. Chem. Phys., 2013, 15, 7204], based on the geometrical analysis of the shape of smectic bubbles in water that are deformed by t...

متن کامل

A Novel Bio-based Sulfonic Zwitterionic Surfactant Derived from Transgenic Soybean Oil and its Performance in Surface and Interfacial Activities

Bio-based surfactants have attracted increasing attention due to their renewable resources and excellent surface properties. In this study, a novel bio-based sulfonic zwitterionic surfactant (BSZS) derived from transgenic soybean oil was prepared using a simple reaction route with two steps of the amidation and quaterisation. The bio-based sulfonic zwitterionic surfactant showed a critical mice...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of colloid and interface science

دوره 393  شماره 

صفحات  -

تاریخ انتشار 2013